|  | 
|  | discreteDiscreteKalmanFilterSquareRoot (int initialTime, VECTOR initialEstimate, MATRIX initialCovariance, filterModel< VECTOR, MATRIX, int > *model) | 
|  | 
| void | predict (int timeUnitsForward) | 
|  | 
| void | update (VECTOR measurement) | 
|  | 
| MATRIX | getCurrentCovariance () | 
|  | 
| VECTOR | getCurrentEstimate () | 
|  | 
| int | getCurrentTime () | 
|  | 
|  | KalmanFilter (int initialTime, VECTOR initialEstimate, MATRIX initialCovariance, filterModel< VECTOR, MATRIX, int > *model) | 
|  | 
|  | 
| int | getStateCount () | 
|  | 
| int | getSensorCount () | 
|  | 
| MATRIX | getTransitionJacobian (VECTOR v, int t) | 
|  | 
| MATRIX | getMeasurementJacobian (VECTOR v, int t) | 
|  | 
| VECTOR | transition (VECTOR t, int time) | 
|  | 
| VECTOR | measure (VECTOR t, int time) | 
|  | 
| void | setCurrentCovariance (MATRIX t) | 
|  | 
| void | setCurrentTime (int t) | 
|  | 
| void | setCurrentEstimate (VECTOR t) | 
|  | 
| MATRIX | getProcessNoiseCovariance (VECTOR v, int t) | 
|  | 
| MATRIX | getSensorNoiseCovariance (VECTOR v, int t) | 
|  | 
| MATRIX | getProcessNoiseCovarianceSqrt (VECTOR v, int t) | 
|  | 
| MATRIX | getSensorNoiseCovarianceSqrt (VECTOR v, int t) | 
|  | 
The documentation for this class was generated from the following file: